Generalized Coherent Pairs on the Unit Circle and Sobolev Orthogonal Polynomials

Francisco Marcellán and Natalia C. Pinzón-Cortés

To Professor Giuseppe Mastroianni on the occasion of his retirement

Abstract. A pair of regular Hermitian linear functionals \((\mathcal{U}, \mathcal{V})\) is said to be a \((M, N)\)-coherent pair of order \(m\) on the unit circle if their corresponding sequences of monic orthogonal polynomials \(\{\phi_n(z)\}_{n \geq 0}\) and \(\{\psi_n(z)\}_{n \geq 0}\) satisfy

\[
\sum_{i=0}^{M} a_{i,n} \phi_{n+m-i}^{(m)}(z) = \sum_{j=0}^{N} b_{j,n} \psi_{n-j}(z), \quad n \geq 0,
\]

where \(M, N, m \geq 0\), \(a_{i,n}\) and \(b_{j,n}\), for \(0 \leq i \leq M\), \(0 \leq j \leq N\), \(n \geq 0\), are complex numbers such that \(a_{M,n} \neq 0\), \(n \geq M\), \(b_{N,n} \neq 0\), \(n \geq N\), and \(a_{i,n} = b_{i,n} = 0\), \(i > n\). When \(m = 1\), \((\mathcal{U}, \mathcal{V})\) is called a \((M, N)\)-coherent pair on the unit circle.

We focus our attention on the Sobolev inner product

\[
\langle p(z), q(z) \rangle_\lambda = \langle \mathcal{U}, p(z)\overline{q(1/z)} \rangle + \lambda \langle \mathcal{V}, p^{(m)}(z)\overline{q^{(m)}(1/z)} \rangle, \quad \lambda > 0, \ m \in \mathbb{Z}^+,
\]

assuming that \(\mathcal{U}\) and \(\mathcal{V}\) is a \((M, N)\)-coherent pair of order \(m\) on the unit circle. We generalize and extend several recent results of the framework of Sobolev orthogonal polynomials and their connections with coherent pairs. Besides, we analyze the cases \((M, N) = (1, 1)\) and \((M, N) = (1, 0)\) in detail. In particular, we illustrate the situation when \(\mathcal{U}\) is the Lebesgue linear functional and \(\mathcal{V}\) is the Bernstein-Szegő linear functional. Finally, a matrix interpretation of \((M, N)\)-coherence is given.

1. Introduction

In the theory of orthogonal polynomials with respect to measures supported on the real line the notion of coherent pair (in our terminology, \((1, 0)\)-coherent pair

\begin{itemize}
 \item 2010 Mathematics Subject Classification. 13B05; 42C05.
 \item Key words and phrases. Coherent pairs, Sobolev inner products, Structure relations, Hermitian linear functionals, Orthogonal polynomials on the unit circle, Sobolev orthogonal polynomials, Lebesgue linear functional, Bernstein-Szegő linear functional, Hessenberg matrices.
 \item The work of the authors has been supported by Dirección General de Investigación, Desarrollo e Innovación, Ministerio de Economía y Competitividad of Spain, grant MTM2012-36732-C03-01.
\end{itemize}
of order 1) arose in the framework of Sobolev orthogonal polynomials and it was introduced by A. Iserles, P. E. Koch, S. P. Norsett and J. M. Sanz-Serna ([4]). From this pioneering contribution, coherent pairs and Sobolev orthogonal polynomials have been widely studied and extended in recent decades (for a historical summary, see e.g. the introductory sections in the recent papers [6] and [8] as well as [9]).

Lately, M. N. de Jesus, F. Marcellán, J. Petronilho, and N. C. Pinzón-Cortés ([5]) generalized all those works focussing the attention on the Sobolev inner product

\[\langle p(x), r(x) \rangle_\lambda = \int_{\mathbb{R}} p(x)r(x)d\mu_0 + \lambda \int_{\mathbb{R}} p^{(m)}(x)r^{(m)}(x)d\mu_1, \quad \lambda > 0, \ m \in \mathbb{Z}^+, \]

where \(p(x) \) and \(r(x) \) are polynomials with real coefficients. The positive definite Borel measures \(\mu_0 \) and \(\mu_1 \) supported on the real line are said to be a \((M,N)\)-coherent pair of order \(m \) if their corresponding sequences of monic orthogonal polynomials \((\text{SMOP})\) \(\{P_n(x)\}_{n \geq 0} \) and \(\{Q_n(x)\}_{n \geq 0} \), satisfy an algebraic relation

\[\sum_{i=0}^{M} a_{i,n} p_{n+m-i}^{(m)}(z) = \sum_{i=0}^{N} b_{i,n} Q_{n-i}(z), \quad n \geq 0, \]

where \(M, N \) are fixed non-negative integers, \(\{a_{i,n}\}_{n \geq 0}, \{b_{i,n}\}_{n \geq 0} \subset \mathbb{C}, a_{M,n} \neq 0 \) if \(n \geq M, b_{N,n} \neq 0 \) if \(n \geq N, a_{i,n} = b_{i,n} = 0 \) when \(i > n \).

Similarly, in the framework of orthogonal polynomials of a discrete variable, R. Álvarez-Nodarse, J. Petronilho, N. C. Pinzón-Cortés, and R. Sevinik-Adıgüzel ([1]) analyzed the case when \(\mu_0 \) and \(\mu_1 \) are discrete measures supported either on a uniform lattice or on a \(q \)-lattice, and they are a \((M,N)\)-coherent pair of order \(m \), \(\nu = \omega \in \mathbb{C} \setminus \{0\} \) or \(\nu = q \in \mathbb{C} \setminus \{0,1\} \), when in (1.1) instead of the standard derivative operator you consider either \(D_\omega p(x) = \frac{p(x+\omega)-p(x)}{\omega} \) or \(D_q p(x) = \frac{p(qx)-p(x)}{(q-1)x} \), the difference and the \(q \)-difference operator, respectively.

In this work we will deal with the analysis of coherent pairs in the framework of the theory of orthogonal polynomials on the unit circle. The structure of the manuscript is as follows. In Section 2, we will state the basic definitions, notations and results which will be useful in the forthcoming sections. In Section 3, we will introduce the Sobolev inner product

\[\langle p(z), q(z) \rangle_\lambda = \langle U, p(z)\bar{q}(1/z) \rangle + \lambda \langle V, p^{(m)}(z)\bar{q}^{(m)}(1/z) \rangle, \quad \lambda > 0, \ m \in \mathbb{Z}^+, \]

and we will study its corresponding sequence of monic orthogonal polynomials when the regular Hermitean linear functionals \(U \) and \(V \) form a \((M,N)\)-coherent pair of order \(m \). In this way, we will highlight the cases \((M,N) = (1,1)\) and \((M,N) = (1,0)\). These results generalize those given by A. Branquinho, A. Foulquié-Moreno, F. Marcellán, and M. N. Rebocho in [2]. Finally, as an example, we will consider the cases when \(U \) is the Lebesgue linear functional and \(V \) is the Bernstein-Szegő linear functional. In Section 4, we will analyze \((M,N)\)-coherent pairs of hermitian linear functionals on the unit circle from a matrix point of view, showing an interesting relation between the Hessenberg matrices associated with the regular Hermitean linear functionals that constitute such a \((M,N)\)-coherent pair of order 1 (see [7] for
the case of the linear functionals on the real line). As a special case, we will study
the case when \(U \) is the linear functional associated with the Lebesgue measure on
the unit circle. Furthermore, when \((U, V)\) is a \((M,N)\)-coherent pair of order \(m\) on
the unit circle, we will give a matrix representation of the multiplication operator
by \(z \) in terms of the basis of Sobolev polynomials orthogonal with respect to (1.2),
involving a matrix similar to the Hessenberg matrix associated with \(U \).

2. Preliminaries

Let us consider the unit circle \(\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \} \), the linear space of
Laurent polynomials with complex coefficients \(\Lambda = \text{span}_\mathbb{C} \{ z^n : n \in \mathbb{Z} \} \), and a linear
functional \(U : \Lambda \to \mathbb{C} \). We can associate with \(U \) a sequence of moments \(\{ c_n \}_{n \in \mathbb{Z}} \)
defined by \(c_n = \langle U, z^n \rangle \), \(n \in \mathbb{Z} \), and a bilinear form \(\langle p(z), q(z) \rangle_U = \langle U, p(z)\overline{q}(1/z) \rangle \),
where \(p, q \in \mathbb{P} \), the linear space of polynomials with complex coefficients, and
\(\langle U, f(z) \rangle \) denotes the image of \(f(z) \in \Lambda \) by the linear functional \(U \). Notice that
\[
\langle p(z), q(z) \rangle_U = \langle p(z)\overline{q}(1/z), 1 \rangle_U = \langle 1, \overline{p}(1/z)q(z) \rangle_U = \langle \overline{q}(1/z), \overline{p}(1/z) \rangle_U, \quad p, q \in \mathbb{P}.
\]

When \(c_{-n} = \tau_n, n \geq 0 \), the linear functional \(U \) is said to be Hermitian. In this
way, an Hermitian linear functional \(U \) is said to be quasi-definite or regular (resp.
positive definite) if \(\det(T_n) \neq 0 \) (resp. \(> 0 \)) for \(n \geq 0 \), where \(T_n = [c_{j-k}]_{|j-k|=0, n \geq 0} \). Notice that in this case \(U \) is an Hermitian bilinear form. Besides, an Hermitian linear functional \(U \) is regular if and only if there exists a (unique) sequence of monic
orthogonal polynomials on the unit circle (OPUC, in short) with respect to such a
linear functional, i.e., if there exists a sequence of monic polynomials \(\{ \phi_n(z) \}_{n \geq 0} \)
such that \(\deg(\phi_n(z)) = n, n \geq 0 \), and \(\langle \phi_m(z), \phi_n(z) \rangle_U = \kappa_n \delta_{m,n}, \kappa_n \neq 0 \). This
sequence of monic OPUC \(\{ \phi_n(z) \}_{n \geq 0} \) satisfies the forward Szegő recurrence relation
\[
(2.1) \qquad \phi_n(z) = z\phi_{n-1}(z) + \alpha_n \phi_{n-1}^*(z), \quad n \geq 1, \quad \phi_0(z) = 1,
\]
where \(\phi_n^*(z) \) denotes the reversed polynomial of \(\phi_n(z) \) defined by
\[
\phi_n^*(z) = z^n \overline{\phi_n}(1/z), \quad n \geq 0,
\]
and \(\alpha_n = \phi_n(0), n \geq 0 \), are said to be the Verblunsky coefficients of \(U \). The
sequence of monic OPUC \(\{ \phi_n(z) \}_{n \geq 0} \) is completely determined by the sequence of
Verblunsky coefficients \(\{ \alpha_n \}_{n \geq 0} \) which satisfy \(|\alpha_n| \neq 1 \) (resp. \(< 1 \)) for \(n \geq 1 \) when
\(U \) is regular (resp. positive definite). ([10, 11]).

On the other hand, for every positive definite Hermitian linear functional \(U \) we have
an integral representation of the associated inner product as
\[
\langle p(z), q(z) \rangle_U = \langle U, p(z)\overline{q}(1/z) \rangle = \frac{1}{2\pi} \int_0^{2\pi} p(z)\overline{q}(1/z) d\mu(\theta), \quad z = e^{i\theta}, \quad p, q \in \mathbb{P},
\]
where \(\mu \) is a nontrivial probability measure supported on an infinite subset of \(\mathbb{T} \). ([10, 11]). In this way, the Bernstein-Szegő linear functional with parameter \(-C\)
is a well known and elementary positive definite linear functional associated with
the measure \(d\mu(\theta) = \frac{1-|C|^2}{1+C^2}\frac{d\theta}{2\pi}, \) \(C \in \mathbb{C}, |C| < 1 \), such that the corresponding
monic OPUC and moments are \(\phi_0(z) = 1, \phi_n(z) = z^{n-1}(z+C), n \geq 1, \) and
\(c_n = (-C)^n, n \geq 0 \), respectively. Notice that for \(C = 0 \), you recover the Lebesgue linear functional.
From (2.1), it is easy to check that the multiplication operator by \(z \) in terms of the (monic orthogonal) basis \(\{ \phi_n(z) \}_{n \geq 0} \) is given by
\[
z \phi_n(z) = \phi_{n+1}(z) - \alpha_{n+1} \langle \phi_n(z), \phi_n(z) \rangle_U \sum_{j=0}^{n} \frac{\overline{\sigma_j}}{\langle \phi_j(z), \phi_j(z) \rangle_U} \phi_j(z), \quad n \geq 0,
\]
which can be written in a matrix form as
\[
z \Phi(z) = \mathcal{H}_\phi \Phi(z),
\]
where \(\Phi(z) \) is an infinite vector and \(\mathcal{H}_\phi \) is an infinite lower Hessenberg matrix given by
\[
\Phi(z) = \begin{bmatrix} \phi_0(z) & \phi_1(z) & \cdots \end{bmatrix}^T,
\]
\[
\mathcal{H}_\phi = [h_{k,j}]_{k,j \geq 0} = \begin{cases} 1, & \text{if } j = k + 1, \\ -\frac{\langle \phi_n(z) \phi_n(z) \rangle_U}{\langle \phi_j(z), \phi_j(z) \rangle_U} \alpha_{n+1} \overline{\sigma_j}, & \text{if } j \leq k, \\ 0, & \text{if } j > k + 1. \end{cases}
\]

On the other hand, for fixed \(m, n \geq 0 \), \(\phi_n^{(m)}(z) = \phi_n^{(m)}(z)/(n + 1)_m \) will denote the monic polynomial of degree \(n \), that is the \(n \)th derivative of the monic polynomial of degree \(n + m \), \(\phi_n^{(m)}(z) \). Here \((n + 1)_m \) is the Pochhammer symbol defined by \((a)_n = a(a + 1) \cdots (a + n - 1), n \geq 1, \) and \((a)_0 = 1 \).

3. Sobolev Orthogonal Polynomials and \((M,N)\)-Coherent Pairs of Order \(m \) on the Unit Circle

Let us consider the Sobolev inner product
\[
\langle p(z), q(z) \rangle_\lambda = \int_{\mathbb{T}} p(z) \overline{q}(1/z) d\mu_0(z) + \lambda \int_{\mathbb{T}} p^{(m)}(z) \overline{q^{(m)}}(1/z) d\mu_1(z), \quad \lambda > 0, \ m \in \mathbb{Z}^+,
\]
where \(p, q \in \mathbb{P}, \mu_0, \mu_1 \) are nontrivial probability measures supported on an infinite subset of the unit circle \(\mathbb{T} \). These measures are associated with positive definite Hermitian linear functionals \(\mathcal{U} \) and \(\mathcal{V} \), respectively, defined on \(\Lambda \), and whose sequences of monic OPUC are \(\{ \phi_n(z) \}_{n \geq 0} \) and \(\{ \psi_n(z) \}_{n \geq 0} \), respectively. Thus, the Sobolev inner product can also be written as
\[
\langle p(z), q(z) \rangle_\lambda = \langle \mathcal{U}, p(z) \overline{q}(1/z) \rangle + \lambda \langle \mathcal{V}, p^{(m)}(z) \overline{q^{(m)}}(1/z) \rangle
\]
\[
= \langle p(z), q(z) \rangle_\mathcal{U} + \lambda \langle p^{(m)}(z), q^{(m)}(z) \rangle_\mathcal{V}, \quad p, q \in \mathbb{P}, \lambda > 0, m \in \mathbb{Z}^+,
\]
where \(\langle \cdot, \cdot \rangle_\mathcal{U} \) and \(\langle \cdot, \cdot \rangle_\mathcal{V} \) are the inner products associated with \(\mathcal{U} \) and \(\mathcal{V} \), respectively. Moreover, using this notation, we can also consider the case when \(\mathcal{U} \) and \(\mathcal{V} \) are regular Hermitian linear functionals.

On the other hand, the sequence of monic Sobolev OPUC with respect to the inner product \(\langle \cdot, \cdot \rangle_\lambda \) will be denoted by \(\{ S_n(z; \lambda) \}_{n \geq 0} \).
Every monic Sobolev OPUC $S_n(z; \lambda)$, $n \geq 0$, can be written as
\[S_n(z; \lambda) = \frac{\begin{vmatrix} w_{0,0} & \cdots & w_{0,n} \\ \vdots & \ddots & \vdots \\ w_{n-1,0} & \cdots & w_{n-1,n} \\ 1 & \cdots & z^{n-1} \end{vmatrix}}{\det([w_k,j]_{k,j=0}^{n-1})}, \quad n \geq 1, \quad S_0(z; \lambda) = 1, \]
where $w_{k,j} = \langle z^k, z^j \rangle = u_{k-j} + \lambda (k-m+1)m(j-m+1)_{k,j} + k, j \geq 0$. Thus, every coefficient of $S_n(z; \lambda)$ is a rational function of λ such that its numerator and denominator are polynomials of the same degree. Hence, there exist the monic limit polynomials
\[T_n(z) = \lim_{\lambda \to \infty} S_n(z; \lambda), \quad n \geq 0. \]

In this way,
\[\langle T_n(z), z^j \rangle_U = 0, \quad j < \min\{n, m\}, \quad \text{and} \quad \langle T_n^{(m)}(z), z^j \rangle_V = 0, \quad j < n - m. \]

As a consequence,
\[T_n(z) = \sum_{j=0}^{n} \frac{\langle T_n(z), \phi_j(z) \rangle_U}{\langle \phi_j(z), \phi_j(z) \rangle_U} \phi_j(z) = \sum_{j=0}^{n-m} \frac{\langle T_n(z), \phi_{j+m}(z) \rangle_U}{\langle \phi_{j+m}(z), \phi_{j+m}(z) \rangle_U} \phi_{j+m}(z), \quad n \geq m, \]
as well as
\[T^{(m)}_{n+m}(z) = \sum_{j=0}^{n} \frac{\langle T^{(m)}_{n+m}(z), \psi_j(z) \rangle_V}{\langle \psi_j(z), \psi_j(z) \rangle_V} \psi_j(z) = \psi_n(z), \quad n \geq 0. \]

Thus,
\[\psi_n(z) = \phi_n^{(m)}(z) + \sum_{j=0}^{n-1} \frac{(j+1)m}{(n+1)m} \langle T_{n+m}(z), \phi_{j+m}(z) \rangle_U \phi_{j+m}^{(m)}(z), \quad n \geq 0. \]

From (3.3), for $n \geq 0$ we get
\[T_n(z) = \sum_{j=0}^{n} \frac{\langle T_n(z), S_j(z; \lambda) \rangle_{\lambda}}{\langle S_j(z; \lambda), S_j(z; \lambda) \rangle_{\lambda}} = S_n(z; \lambda) + \sum_{j=m}^{n-1} \frac{\langle T_n(z), S_j(z; \lambda) \rangle_U}{\langle S_j(z; \lambda), S_j(z; \lambda) \rangle_{\lambda}} S_j(z; \lambda), \]
and together with (3.4), for $n \geq m$,
\[S_n(z; \lambda) + \sum_{j=m}^{n-1} \frac{\langle T_n(z), S_j(z; \lambda) \rangle_U}{\langle S_j(z; \lambda), S_j(z; \lambda) \rangle_{\lambda}} S_j(z; \lambda) = \phi_n(z) + \sum_{j=m}^{n-1} \frac{\langle T_n(z), \phi_j(z) \rangle_U}{\langle \phi_j(z), \phi_j(z) \rangle_U} \phi_j(z). \]

Finally, from (3.1), we obtain that $\langle \phi_n(z), z^j \rangle_{\lambda} = 0$, for $j < n < m$, and hence $S_n(z; \lambda) = \phi_n(z)$ for $n < m$, (since the uniqueness of the sequence of monic OPUC).

So, we have proved the following result.
Therefore, \(\kappa \phi (3.8) \)
1, which is a linear system with an unique solution since \(\det \sum \)
equation, and using (3.3), it follows that \((3.9) \)
Furthermore, \(\phi (3.7) \)
Consequently, if we apply \((3.6) \)
\(\phi (3.5) \) in \((3.7) \) and then we integrate \((3.8) \)
where the monic polynomials \(T_n(z) \), \(n \geq 0 \), are given by (3.2).
Now, we are interested in the case when the regular Hermitian linear functionals \(\mathcal{U} \) and \(\mathcal{V} \) form a \((M, N) \)-coherent pair of order \(m \) on the unit circle, which means that their corresponding sequences of monic OPUC \(\{\phi_n(z)\}_{n \geq 0} \) and \(\{\psi_n(z)\}_{n \geq 0} \) satisfy the following algebraic relation
\[(3.7) \quad \phi_n^{[m]}(z) + \sum_{i=1}^{M} a_{i,n} \phi_{n-i}^{[m]}(z) = \psi_n(z) + \sum_{i=1}^{N} b_{i,n} \psi_{n-i}(z), \quad n \geq 0, \]
where \(M, N \) are non-negative integers, and the sequences \(\{a_{i,n}\}_{n \geq 0}, \{b_{i,n}\}_{n \geq 0} \subset \mathbb{C} \) are such that \(a_{M,n} \neq 0, n \geq M, b_{N,n} \neq 0, n \geq N, \) and \(a_{i,n} = b_{i,n} = 0, i > n. \)
In this case, what does (3.6) becomes? Our aim now is to answer this question. If we replace \((3.5) \) in \((3.7) \) and then we integrate \(m \) times the resulting equation, \((3.7) \) becomes, for \(n \geq 0, \)
\(\frac{\phi_{n+m}(z)}{(n+1)m} + \sum_{i=1}^{M} a_{i,n} \frac{\phi_{n-i+m}(z)}{(n-i+1)m} = T_{n+m}(z) + \sum_{i=1}^{N} b_{i,n} \frac{T_{n-i+m}(z)}{(n-i+1)m} + \sum_{j=0}^{m-1} \kappa_{n,j} z^j. \)
Consequently, if we apply \(\langle \cdot, z^k \rangle_{\mathcal{U}} \) for \(k = 0, 1, \ldots, m - 1 \), to both sides in previous equation, and using (3.3), it follows that \(\sum_{j=0}^{m-1} \kappa_{n,j} u_{j-k} = 0, k = 0, \ldots, m - 1 \), which is a linear system with an unique solution since \(\det (u_{j-k}^{m-1})_{k,j=0} \neq 0 \). Therefore, \(\kappa_{n,j} = 0, j = 0, \ldots, m - 1, n \geq 0. \) Thus,
\[(3.8) \quad \frac{\phi_{n+m}(z)}{(n+1)m} + \sum_{i=1}^{M} a_{i,n} \frac{\phi_{n-i+m}(z)}{(n-i+1)m} = T_{n+m}(z) + \sum_{i=1}^{N} b_{i,n} \frac{T_{n-i+m}(z)}{(n-i+1)m}, \quad n \geq 0. \]
Furthermore,
\[(3.9) \quad \frac{T_{n+m}(z)}{(n+1)m} + \sum_{i=1}^{N} b_{i,n} \frac{T_{n-i+m}(z)}{(n-i+1)m} = \frac{S_{n+m}(z; \lambda)}{(n+1)m} + \sum_{j=1}^{n+m} \frac{c_{j,n,\lambda}}{(n+1)m} S_{n-j+m}(z; \lambda), \quad n \geq 0, \]
where from (3.8) and (3.5), the coefficients $c_{j,n,\lambda}$, $1 \leq j \leq n + m$, $n \geq 0$, are

$$
\langle S_{n+m}(z;\lambda), S_{n+j+m}(z;\lambda) \rangle \lambda \frac{c_{j,n,\lambda}}{(n+1)_m} =
$$

$$
\sum_{i=1}^{M} a_{i,n} \langle \phi_{n-i+m}(z), S_{n+j+m}(z;\lambda) \rangle_U + \lambda \sum_{i=1}^{N} b_{i,n} \langle \psi_{n-i}(z), S_{n-j+m}(z;\lambda) \rangle_V,
$$

and, as a consequence, $c_{j,n,\lambda} = 0$ for $j > i$ or $j > K = \max\{M,N\}$ or $j > n$. So, from (3.8) and (3.9) we get, for $n \geq 0$,

$$
\phi_{n+m}(z) + \sum_{i=1}^{M} \frac{(n+1)_m}{(n-i+1)_m} a_{i,n} \phi_{n+i+m}(z) = S_{n+m}(z;\lambda) + \sum_{j=1}^{K} c_{j,n,\lambda} S_{n-j+m}(z;\lambda).
$$

Besides, from the previous proposition $S_{n}(z;\lambda) = \phi_{n}(z)$ for $n \leq m$.

Conversely, if the previous equation holds, we can apply $\langle \cdot, p(z) \rangle_\lambda$ in both sides of this equation, for any $p \in \mathbb{P}_{n-K+m-1}$. As a consequence,

$$
\lambda \left\langle \left(\phi_{n+m}^{(m)}(z) + \sum_{i=1}^{M} \frac{(n+1)_m}{(n-i+1)_m} a_{i,n} \phi_{n-i+m}^{(m)}(z) \right), p^{(m)}(z) \right\rangle_V = 0.
$$

In other words,

$$
\left\langle \left(\phi_{n}^{[m]}(z) + \sum_{i=1}^{M} a_{i,n} \phi_{n-i}^{[m]}(z) \right), \psi(z) \right\rangle_V = 0, \quad q \in \mathbb{P}_{n-K-1}.
$$

Since

$$
\phi_{n}^{[m]}(z) + \sum_{i=1}^{M} a_{i,n} \phi_{n-i}^{[m]}(z) = \psi_{n}(z) + \sum_{j=1}^{n} b_{j,n} \psi_{n-j}(z), \quad n \geq 0,
$$

then $b_{j,n} = 0$, $n - j \leq n - K - 1$, which is a (M,K)-coherence relation of order m.

Summarizing, we generalize the relation between Sobolev orthogonal polynomials and $(1,0)$-coherent pairs on the unit circle stated in [2].

Theorem 3.1. If (U,V) is a (M,N)-coherent pair of order m of hermite linear functionals on the unit circle given by (3.7), then $S_{n}(z;\lambda) = \phi_{n}(z)$, $n \leq m$, and

$$
(3.10) \quad \phi_{n+m}(z) + \sum_{i=1}^{M} \frac{(n+1)_m}{(n-i+1)_m} a_{i,n} \phi_{n-i+m}(z)
$$

$$
= S_{n+m}(z;\lambda) + \sum_{j=1}^{K} c_{j,n,\lambda} S_{n-j+m}(z;\lambda), \quad n \geq 0,
$$
where $K = \max\{M, N\}$, $c_{j,n,\lambda} = 0$ for $n < j \leq K$, and

\begin{equation}
\phi_n^{[m]}(z) + \sum_{i=1}^{M} a_{i,n} \phi_n^{[m]}(z) = \psi_n(z) + \sum_{j=1}^{K} b_{j,n} \psi_{n-j}(z), \quad n \geq 0,
\end{equation}

i.e., $(\mathcal{U}, \mathcal{V})$ is a (M, K)-coherent pair of order m on the unit circle (assuming $b_{K,n} \neq 0$, $n \geq K$), where $b_{j,n} = 0$ for $n < j \leq K$, and

\begin{equation}
b_{j,n} = \frac{\langle \phi_n^{[m]}(z) + \sum_{i=1}^{M} a_{i,n} \phi_n^{[m]}(z), \psi_{n-j}(z) \rangle_{\mathcal{V}}}{\langle \psi_{n-j}(z), \psi_{n-j}(z) \rangle_{\mathcal{V}}}, \quad 1 \leq j \leq \min\{K, n\}, \ n \geq 0.
\end{equation}

** Remark 3.1.** For $j = K$ and $n \geq K$ (3.11) reads

\begin{equation}
c_{K,n,\lambda} = \frac{(n+1)_m}{\langle \psi_{n-K-m}(z), \psi_{n-K-m}(z) \rangle_{\lambda}} \frac{a_{M,n}}{(n+1)_m} \langle \phi_{n-M+m}(z), \psi_{n-K-m}(z) \rangle_{\lambda} \delta_{M,K} + \lambda (n-N+1)_m b_{N,n} \langle \psi_{n-N}(z), \psi_{n-N}(z) \rangle_{\mathcal{V}} \delta_{N,K}.
\end{equation}

Thus, for every $n \geq K$ we will claim that

- if $M > N$ and $a_{M,n} \neq 0$, then $c_{K,n,\lambda} \neq 0$,
- if $M < N$ and $b_{N,n} \neq 0$, then $c_{K,n,\lambda} \neq 0$,
- if $M = N(= K)$ and $a_{M,n} b_{N,n} \neq 0$, then $c_{K,n,\lambda} \neq 0$ holds if and only if $a_{K,n} \langle \phi_{n-K}(z), \psi_{n-K}(z) \rangle_{\lambda} + \lambda (n-K+1)_m b_{N,n} \langle \psi_{n-N}(z), \psi_{n-K}(z) \rangle_{\mathcal{V}} \neq 0$.

Applying Theorem 3.1, we obtain the monic Sobolev OPUC $S_n(z; \lambda)$, $n \geq 0$, as well as the coefficients $c_{j,n,\lambda}$, $1 \leq j \leq K$, $n \geq 0$, assuming that $(\mathcal{U}, \mathcal{V})$ is a (M, N)-coherent pair of order m of Hermitian linear functionals on the unit circle. Nevertheless, we can compute the sequences $\{\langle S_n(z; \lambda), S_n(z; \lambda) \rangle_{\lambda}\}_{n \geq 0}$ and $\{c_{j,n,\lambda}\}_{n \geq 0}$, $1 \leq j \leq K$, without knowing the explicit expressions of the monic Sobolev OPUC $S_n(z; \lambda)$, $n \geq 0$. Of course, if we also want to obtain these monic Sobolev OPUC polynomials then, we can use (3.10).
Indeed, let

\[s_n = \langle S_n(z; \lambda), S_n(z; \lambda) \rangle \lambda, \quad \tilde{a}_{i,n} = \frac{(n+1)_m}{(n-i+1)_m} a_{i,n}, \quad \tilde{b}_{i,n} = (n+1)_m b_{i,n}, \quad n \geq 0, \]

where \(\tilde{a}_{i,n} = \tilde{b}_{i,n} = 0 \) for \(i > n \), \(\tilde{a}_{0,n} = 1 \) and \(\tilde{b}_{0,n} = (n+1)_m \), for \(n \geq 0 \).

Since (3.10) and (3.11) hold setting \(c_{0,n,\lambda} = 1 \) for \(n \geq 0 \), from (3.7) and (3.10), it follows that (3.11) becomes, for \(n \geq j \) and \(0 \leq j \leq K \),

\[
\begin{align*}
\sum_{i=j}^{M} \sum_{\ell=0}^{K} \tilde{a}_{i,n} \tilde{a}_{j,n-j} \langle \phi_{n-i+m}(z), \phi_{n-j-\ell+m}(z) \rangle_U \\
- \sum_{i=j}^{M} \sum_{\ell=0}^{K} \tilde{b}_{i,n} \tilde{b}_{j,n-j} \langle \phi_{n-i+m}(z), S_{n-j-\ell+m}(z; \lambda) \rangle_U \\
+ \lambda \sum_{i=j}^{N} \sum_{\ell=0}^{K} \tilde{b}_{i,n} \tilde{b}_{j,n-j} \langle \psi_{n-i}(z), \psi_{n-j-\ell}(z) \rangle_V \\
- \lambda \sum_{i=j}^{N} \sum_{\ell=0}^{K} \tilde{b}_{i,n} \tilde{b}_{j,n-j} \langle \psi_{n-i}(z), \psi_{n-j-\ell+m}(z; \lambda) \rangle_V,
\end{align*}
\]

where \(\langle \phi_{n-i+m}(z), S_{n-j-\ell+m}(z; \lambda) \rangle_U = 0 \), and \(\langle \psi_{n-i}(z), \psi_{n-j-\ell+m}(z; \lambda) \rangle_V = 0 \), for \(i < j + \ell \) or \(j + \ell > K \geq M,N \). Consequently, for \(n \geq j \) and \(0 \leq j \leq K \), we get

\[
\begin{align*}
\sum_{i=j}^{M} \sum_{\ell=0}^{K} \tilde{a}_{i,n} \tilde{a}_{j,n-j} \langle \phi_{n-i+m}(z), \phi_{n-i+m}(z) \rangle_U \\
+ \lambda \sum_{i=j}^{N} \tilde{b}_{i,n} \tilde{b}_{j,n-j} \langle \psi_{n-i}(z), \psi_{n-i}(z) \rangle_V \\
- \sum_{\ell=1}^{K-j} \tilde{a}_{i,n} \tilde{a}_{j,n-j} \langle \phi_{n-i+m}(z), S_{n-j-\ell+m}(z; \lambda) \rangle_U \\
- \lambda \sum_{\ell=1}^{K-j} \tilde{b}_{i,n} \tilde{b}_{j,n-j} \langle \psi_{n-i}(z), \psi_{n-j-\ell+m}(z; \lambda) \rangle_V.
\end{align*}
\]

Notice that, according to (3.11), the sum of the last two terms is equal to \(- \sum_{\ell=1}^{K-j} \tilde{a}_{i,n} \tilde{a}_{j,n-j} s_{n-j-\ell+m} c_{j+\ell,n,\lambda} \). Therefore, replacing \(n \) by \(n+j \), we have get the recurrence relation stated in the following theorem.

Theorem 3.2. If \((U, V) \) is a \((M,N)\)-coherent pair of order \(m \) on the unit circle given by (3.7), then

\[s_{n+m} c_{j,n+j,\lambda} = \zeta_{j,n,\lambda} - \sum_{\ell=1}^{K-j} \tilde{a}_{\ell,n,\lambda} c_{j+\ell,n+j,\lambda} s_{n-\ell+m}, \quad 0 \leq j \leq K, \quad n \geq 0, \]

\[(3.13) \]
\[s_n = \langle \phi_n(z), \phi_n(z) \rangle_U, \quad n < m, \quad c_{j,n,\lambda} = 0, \quad n < j \leq K, \quad c_{0,n,\lambda} = 1, \quad n \geq 0, \]

where

\[\zeta_{j,n,\lambda} = \sum_{i=j}^{M} \bar{a}_{i,n+j} \overline{a}_{i-j,n} \langle \phi_{n+j-i+m}(z), \phi_{n+j-i+m}(z) \rangle_U + \lambda \sum_{i=j}^{N} \bar{b}_{i,n+j} \overline{b}_{i-j,n} \langle \psi_{n+j-i}(z), \psi_{n+j-i}(z) \rangle_V, \quad 0 \leq j \leq K, \]

with \(s_n, a_{i,n} \) and \(b_{i,n}, n \geq 0 \), given by (3.12), and \(K = \max\{M, N\} \).

Remark 3.2.

- For the recurrence relation appearing in (3.13), we can associate the following matrix with \(K + 1 \) rows and infinitely many columns

\[
\begin{bmatrix}
 s_m & s_{m+1} & s_{m+2} & \cdots \\
 0 & c_{1,1,\lambda} & c_{1,2,\lambda} & c_{1,3,\lambda} & \cdots \\
 0 & 0 & c_{2,2,\lambda} & c_{2,3,\lambda} & c_{2,4,\lambda} & \cdots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 0 & \cdots & 0 & c_{K,K,\lambda} & c_{K,K+1,\lambda} & c_{K,K+2,\lambda} & \cdots
\end{bmatrix},
\]

which indicates the order for the computation of the sequences \(\{s_{m+n}\}_{n \geq 0} \) and \(\{c_{j,n,\lambda}\}_{n \geq 0}, 1 \leq j \leq K \), through its decreasing diagonals.

- For \(j = 0 \), (3.13) becomes the following non-homogeneous linear difference equation of order \(K \) satisfied by \(\{s_n\}_{n \geq 0} \)

\[
s_{n+m} + \sum_{\ell=1}^{K} |c_{\ell,n,\lambda}|^2 s_{n-\ell+m} = \zeta_{0,n,\lambda}, \quad n \geq 0,
\]

\[
s_n = \langle \phi_n(z), \phi_n(z) \rangle_U, \quad n < m, \quad \text{and} \quad c_{j,n,\lambda} = 0, \quad n < j \leq K, \quad \text{where for } n \geq 0,
\]

\[
\zeta_{0,n,\lambda} = \sum_{i=0}^{M} |\bar{a}_{i,n}|^2 \langle \phi_{n-i+m}(z), \phi_{n-i+m}(z) \rangle_U + \lambda \sum_{i=0}^{N} |\bar{b}_{i,n}|^2 \langle \psi_{n-i}(z), \psi_{n-i}(z) \rangle_V.
\]

The sequences \(\{s_n = \langle S_n(z; \lambda), S_n(z; \lambda) \rangle_\lambda\}_{n \geq 0} \) and \(\{c_{j,n,\lambda}\}_{n \geq 0}, 1 \leq j \leq K \), fulfill some additional properties in the cases when \(U \) and \(V \) constitute a (1,1)-coherent or (1,0)-coherent pair of order \(m \) of Hermitian linear functionals on the unit circle. This will be the topic to be studied in the next two subsections.

3.1. (1, 1)-Coherent Pairs of Order \(m \) on the Unit Circle

Let \((U, V) \) be a (1,1)-coherent pair of order \(m \) of regular Hermitian linear functionals on the unit circle such that

\[
\phi_n^{[m]}(z) + a_{1,n}\phi_n^{[m]}(-z) = \psi_n(z) + b_{1,n}\psi_{n-1}(z), \quad n \geq 0,
\]

with \(a_{1,0} = b_{1,0} = 0 \). Let \(\{S_n(z; \lambda)\}_{n \geq 0} \) be the sequence of monic Sobolev OPUC with respect to the inner product (3.1) and let us denote by \(s_n = \langle S_n(z; \lambda), S_n(z; \lambda) \rangle_\lambda, n \geq 0 \), their square norm in terms of the Sobolev inner product. Then,
i. From Theorem 3.1, the monic Sobolev OPUC \(S_n(z; \lambda) \), \(n \geq 0 \), satisfy
\[
\phi_{m+n}(z) + \frac{n+m}{n} a_{n} \phi_{m+n-1}(z) = S_{m+n}(z; \lambda) + c_{1,n,\lambda} S_{m+n-1}(z; \lambda), \quad n \geq 0,
\]
and \(S_n(z; \lambda) = \phi_n(z), \ n \leq m \), where
\[
c_{1,n,\lambda} = \frac{1}{s_{m+n-1}} \left[\frac{n+m}{n} a_{n} \langle \phi_{m+n-1}(z), \phi_{m+n-1}(z) \rangle_U + \lambda(n+1)b_{1,n} \langle \psi_{n-1}(z), \psi_{n-1}(z) \rangle_V \right].
\]
In particular, \(c_{1,0,\lambda} = 0 \).

ii. From Theorem 3.2, the sequences \(\{s_n\}_{n \geq 0} \) and \(\{c_{1,n,\lambda}\}_{n \geq 0} \) satisfy
\[
s_{n+m+1} = \zeta_{n+1,\lambda} + |\zeta_{n,\lambda}|^2 s_{n+1}, \quad n \geq 0,
\]
where
\[
\zeta_{n,\lambda} = \frac{n+m+1}{n+1} \left[a_{n+1} \langle \phi_{m+n+1}(z), \phi_{m+n+1}(z) \rangle_U + \lambda(n+1) b_{1,n+1} \langle \psi_{n+1}(z), \psi_{n+1}(z) \rangle_V \right],
\]
\[
\zeta_{n+1,\lambda} = \langle \phi_{n+1}(z), \phi_{n+1}(z) \rangle_U + \frac{(n+m)^2}{n^2} |a_{n+1}|^2 \langle \phi_{n+m+1}(z), \phi_{n+m+1}(z) \rangle_U
\]
\[
+ \lambda(n+1)^2 b_{1,n+1}^2 \left[\langle \psi_{n+1}(z), \psi_{n+1}(z) \rangle_V + \langle b_{1,n+1}^2 \psi_{n-1}(z), \psi_{n-1}(z) \rangle_V \right].
\]
Therefore, if \(\zeta_{n,\lambda} \neq 0 \) for \(n \geq 0 \), then \(s_n \) and \(c_{1,n,\lambda} \), \(n \geq 0 \), are given by
\[
s_{n+m+1} = \zeta_{n+1,\lambda} + |\zeta_{n,\lambda}|^2 s_{n+1}, \quad n \geq 0,
\]
with \(c_{1,0,\lambda} = 0 \), \(s_m = \zeta_{0,\lambda} \), \(s_n = \langle \phi_n(z), \phi_n(z) \rangle_U \), \(n < m \).

iii. Rewriting the equations in (3.16) we get \(c_{1,1,\lambda} = \zeta_{1,0,\lambda}/\zeta_{0,0,\lambda} \), and
\[
c_{1,n,\lambda} = \frac{\zeta_{n,\lambda}}{\zeta_{n-1,\lambda}} c_{1,n-1,\lambda}, \quad n \geq 1, \quad s_{n+m} = \frac{|\zeta_{n,\lambda}|^2}{\zeta_{n+1,\lambda}} s_{n+1}, \quad n \geq 0.
\]
As a consequence, when \(\zeta_{n,\lambda} \neq 0 \) for \(n \geq 0 \), every constant \(s_{m+n}, \ n \geq 0 \), and \(c_{1,n,\lambda}, \ n \geq 1 \), can be represented by continued fractions as
\[
s_{m+n} = \frac{|\zeta_{n,\lambda}|^2}{\zeta_{n+1,\lambda}} s_{n+1}, \quad n \geq 0,
\]
\[
c_{1,n,\lambda} = \frac{\zeta_{n+1,\lambda}}{\zeta_{n,\lambda}} c_{1,n-1,\lambda} = \frac{\zeta_{n+2,\lambda}}{\zeta_{n+1,\lambda}} c_{1,n+1,\lambda}, \quad n \geq 0.
\]

iv. From the theory of continued fractions, it is possible to define a sequence
\(\{\varpi_n,\lambda\}_{n \geq 0} \) as follows
\[
\varpi_{0,\lambda} = 1 \quad \text{and} \quad \varpi_{n+1,\lambda} = s_{m+n} \varpi_n, \quad n \geq 0.
\]
So, when \(s_n \in \mathbb{R} \), \(n \geq 0 \), (for instance, when \(\mathcal{U} \) and \(\mathcal{V} \) are positive definite Hermitian linear functionals) then the first equation in (3.16) becomes

\[
\varpi_{n+2,\lambda} = \zeta_{0,n+1,\lambda} \varpi_{n+1,\lambda} - \zeta_{1,n,\lambda}^2 \varpi_{n,\lambda}, \quad n \geq 0, \quad \varpi_{1,\lambda} = \zeta_{0,0,\lambda}, \quad \varpi_{0,\lambda} = 1.
\]

As a consequence, since \(\zeta_{1,n,\lambda} \neq 0 \), \(n \geq 0 \), let us consider the sequence of monic polynomials \(\{\varpi_n(x;\lambda)\}_{n \geq 0} \) such that \(\varpi_n(0;\lambda) = \varpi_{n,\lambda}, \ n \geq 0 \), satisfying the three-term recurrence relation

\[
\varpi_{n+1}(x;\lambda) = (x + \zeta_{0,n,\lambda}) \varpi_{n}(x;\lambda) - \zeta_{1,n-1,\lambda}^2 \varpi_{n-1}(x;\lambda), \quad n \geq 0,
\]

\(\varpi_0(x;\lambda) = 1, \ \varpi_{-1}(x;\lambda) = 0. \)

From the Favard’s Theorem, the sequence of monic polynomials \(\{\varpi_n(x;\lambda)\}_{n \geq 0} \) is orthogonal with respect to some positive Borel measure supported on the real line. Therefore, the sequences \(\{s_n\}_{n \geq 0} \) and \(\{c_{1,n,\lambda}\}_{n \geq 0} \) fulfill

\[
s_{m+n} = \frac{\varpi_{n+1}(0;\lambda)}{\varpi_n(0;\lambda)}, \quad c_{1,n+1,\lambda} = \zeta_{1,n,\lambda} \frac{\varpi_n(0;\lambda)}{\varpi_{n+1}(0;\lambda)}, \quad n \geq 0.
\]

Remark 3.3. If \(c_{1,n,\lambda} \in \mathbb{R} \) and \(\zeta_{1,n,\lambda} \neq 0 \) for \(n \geq 0 \), then the same analysis done in the previous item iv. holds for the second equation in (3.16). In fact, using

\[
\theta_{n+1,\lambda} = \frac{\zeta_{1,n,\lambda}}{\zeta_{1,n-1,\lambda}} \theta_{n,\lambda}, \ n \geq 1, \quad \theta_{1,\lambda} = \frac{\zeta_{1,0,\lambda}}{c_{1,1,\lambda}} \theta_{0,\lambda}, \quad \theta_{0,\lambda} = 1,
\]

instead of (3.17), we get the existence of a SMOP \(\{\theta_n(x;\lambda)\}_{n \geq 0} \), such that \(\theta_n(0;\lambda) = \theta_{n,\lambda} \) for \(n \geq 0 \), which satisfies the three-term recurrence relation

\[
\theta_{n+1}(x;\lambda) = \left(x + \zeta_{0,n,\lambda}\right) \theta_{n}(x;\lambda) - \frac{\zeta_{1,n-1,\lambda}}{\zeta_{1,n-2,\lambda}} \theta_{n-1}(x;\lambda), \quad n \geq 2,
\]

\(\theta_0(x;\lambda) = x + \zeta_{0,0,\lambda}, \ \theta_0(x;\lambda) = 1. \)

Additionally, if \(\zeta_{0,n,\lambda}, \zeta_{1,n,\lambda} \in \mathbb{R} \) and \(\zeta_{1,n,\lambda} > 0 \) for \(n \geq 0 \), then \(\{\theta_n(x;\lambda)\}_{n \geq 0} \) is orthogonal with respect to some positive Borel measure supported on the real line.

Finally, in this case, the sequences \(\{s_n\}_{n \geq 0} \) and \(\{c_{1,n,\lambda}\}_{n \geq 0} \) satisfy \(c_{1,1,\lambda} = \zeta_{1,0,\lambda} \theta_{0}(0;\lambda) \) and

\[
c_{1,n+1,\lambda} = \zeta_{1,n,\lambda} \frac{\theta_{n}(0;\lambda)}{\theta_{n+1}(0;\lambda)}, \quad s_{m+n} = \frac{\zeta_{1,n-1,\lambda}}{\theta_{n+1}(0;\lambda)} \frac{\theta_{n+1}(0;\lambda)}{\theta_{0}(0;\lambda)}, \quad n \geq 1.
\]

Example 3.1. In [3, Section 4] it was proved that if \(\mathcal{U}, \mathcal{V} \) is a (1,1)-coherent pair of order \(m \) of Hermitian linear functionals on the unit circle given by (3.14), such that \(\mathcal{U} \) is the Lebesgue linear functional, \(\mathcal{V} \) is normalized, i.e., \(\nu_0 = 1 \), \(|b_{1,1} - a_{1,1}| < 1 \), and, either \(a_{1,2} = a_{1,1} - b_{1,1} \) (i.e., \(b_{1,2} = 0 \)) or \(b_{1,N} = 0 \) for some \(N \geq 2 \), then \(a_{1,n} = a_{1,1} - b_{1,1} \) as well as \(b_{1,n} = 0 \) for \(n \geq 2 \), and \(\mathcal{V} \) is the Bernstein-Szegő linear functional with parameter \(-a_{1,2} = b_{1,1} - a_{1,1} \). In this way, \(\langle \phi_n(z), \phi_n(z) \rangle_{\mathcal{U}} = \langle z^n, z^n \rangle_{\mathcal{U}} = 1, \ n \geq 0, \ \langle \psi_n(z), \psi_n(z) \rangle_{\mathcal{V}} = \langle z^n+a_{1,2}z^{n-1}, z^n+a_{1,2}z^{n-1} \rangle_{\mathcal{V}} = 1-|a_{1,2}|^2, \)
\[n \geq 1, \text{ and } \langle \psi_0(z), \psi_0(z) \rangle_V = 1. \] Thus, from (3.15), the coefficients \(\zeta_{0,n,\lambda} \) and \(|\zeta_{1,n,\lambda}|^2, n \geq 0, \) appearing in the three-term recurrence relation (3.18) satisfied by the associated SMOP \(\{w_n(x; \lambda)\}_{n \geq 0} \), are \(\zeta_{0,0,\lambda} = 1 + \lambda(m!)^2 \in \mathbb{R} \),

\[
\zeta_{0,1,\lambda} = 1 + (m + 1)^2|a_{1,1}|^2 + \lambda(m + 1)!^2(1 - |a_{1,2}|^2 + |b_{1,1}|^2) \in \mathbb{R},
\]
\[
\zeta_{0,n,\lambda} = 1 + \frac{(n + 1)^2}{n^2}|a_{1,2}|^2 + \lambda(n + 1)^2(1 - |a_{1,2}|^2) \in \mathbb{R}, \quad n \geq 2,
\]
\[
\zeta_{1,0,\lambda} = (m + 1)a_{1,1} + \lambda(m!)^2(m + 1)b_{1,1}, \quad \zeta_{1,n,\lambda} = \frac{n + m + 1}{n + 1}a_{1,2}, \quad n \geq 1,
\]

where \(a_{1,2} = a_{1,1} - b_{1,1} \). Additionally, from previous equations, the coefficients of the three-term recurrence relation (3.19) satisfied by the SMOP \(\{\theta_n(x; \lambda)\}_{n \geq 0} \) are

\[
\zeta_{0,n,\lambda} \overline{\zeta}_{1,n-1,\lambda} = 1 + \frac{(n + 1)^2}{n^2}|a_{1,2}|^2 + \lambda(n + 1)^2(1 - |a_{1,2}|^2), \quad n \geq 2,
\]
\[
\zeta_{0,1,\lambda} \overline{\zeta}_{1,0,\lambda} = \frac{1 + (m + 1)^2|a_{1,2}|^2 + \lambda(m + 1)!^2(1 - |a_{1,2}|^2 + |b_{1,1}|^2)}{(m + 1)a_{1,1} + \lambda(m!)^2(m + 1)b_{1,1}}, \quad \text{and,}
\]
\[
\zeta_{1,n,\lambda} \overline{\zeta}_{1,n-1,\lambda} = \frac{n(n + m + 1)}{(n + 1)(n + m)}, \quad n \geq 2, \quad \zeta_{1,1,\lambda} \overline{\zeta}_{1,0,\lambda} = \frac{m + 2}{2}a_{1,2}.
\]

3.2. (1, 0)-Coherent Pairs of Order \(m \) on the Unit Circle

When the regular Hermitian linear functionals \(\mathcal{U} \) and \(\mathcal{V} \) form a (1, 0)-coherent pair of order \(m \) on the unit circle, i.e., (3.14) reads

\[
\phi_n^{[m]}(z) + a_{1,n}\phi_{n-1}^{[m]}(z) = \psi_n(z), \quad n \geq 0, \quad a_{1,0} = 0, a_{1,n} \neq 0, \quad n \geq 1,
\]

all the results obtained in the previous subsection hold taking \(b_{1,n} = 0 \), for \(n \geq 0 \).

In particular, the coefficients \(\zeta_{1,n,\lambda} \) and \(\zeta_{0,n,\lambda}, n \geq 0, \) become

\[
\zeta_{1,n,\lambda} = \frac{n + m + 1}{n + 1}a_{1,n+1} \langle \phi_{m+n}(z), \phi_{m+n}(z) \rangle_{\mathcal{U}},
\]
\[
\zeta_{0,n,\lambda} = \langle \phi_{m+n}(z), \phi_{m+n}(z) \rangle_{\mathcal{U}} + \frac{(n + m)^2}{n^2}|a_{1,n}|^2 \langle \phi_{m+n-1}(z), \phi_{m+n-1}(z) \rangle_{\mathcal{U}}
\]
\[
+ \lambda(n + 1)^2|b_{1,n}|^2 \langle \psi_n(z), \psi_n(z) \rangle_{\mathcal{V}},
\]

i.e., constants and polynomials in the variable \(\lambda \) of degree 1. In this way, in the item iv., it is possible to show that \(w_n(0; \lambda) \) is a polynomial in \(\lambda \) of degree \(n \) with leading coefficient \(\prod_{j=0}^{n-1}(j + 1)^2 \langle \psi_j(z), \psi_j(z) \rangle_{\mathcal{V}}, \quad n \geq 1, \) using induction on \(n \) and (3.18). Consequently, since \(a_{1,n} \neq 0 \) for \(n \geq 1, \) from (3.18), the monic polynomials \(\tilde{w}_n(\lambda) = w_n(0; \lambda)/\prod_{j=0}^{n-1}(j + 1)^2 \langle \psi_j(z), \psi_j(z) \rangle_{\mathcal{V}}, \quad n \geq 1, \) are an SMOP in the variable \(\lambda \) because they satisfy the following three-term recurrence relation

\[
(3.20) \quad \tilde{w}_{n+1}(\lambda) = (\lambda + \alpha_n)\tilde{w}_n(\lambda) - \beta_n\tilde{w}_{n-1}(\lambda), \quad n \geq 0, \quad \tilde{w}_0(\lambda) = 1,
\]
where \(\alpha_0 = \frac{\langle \phi_n(z), \phi_n(z) \rangle_{\mathcal{U}}}{(1 + |\alpha_{1,n}|^2)}, \beta_0 = 0, \)

\[
\alpha_n = \frac{\langle \phi_{n+m}(z), \phi_{n+m}(z) \rangle_{\mathcal{U}} + (n+m)^2|a_{1,n}|^2 \langle \phi_{n+m-1}(z), \phi_{n+m-1}(z) \rangle_{\mathcal{U}}}{(n+1)^2 \langle \psi_n(z), \psi_n(z) \rangle_{\mathcal{V}}}, \quad n \geq 1,
\]

\[
\beta_n = \frac{|a_{1,n}|^2 \langle \phi_{m+n-1}(z), \phi_{m+n-1}(z) \rangle_{\mathcal{U}}^2}{(n)^2 \langle \psi_n(z), \psi_n(z) \rangle_{\mathcal{V}}}, \quad n \geq 1.
\]

As above, \(\{\tilde{w}_{n+1}(\lambda)\}_{n \geq 0} \) is the SMOP with respect to some positive Borel measure supported on the real line if \(\alpha_n \in \mathbb{R} \) and \(\beta_{n+1} > 0 \) for \(n \geq 0 \) (for instance, when \(\mathcal{U} \) and \(\mathcal{V} \) are positive definite Hermitian linear functionals).

Finally, the sequences \(\{s_n\}_{n \geq 0} \) and \(\{c_{1,n,\lambda}\}_{n \geq 0} \) satisfy

\[
s_{m+n} = \kappa_n \frac{\tilde{w}_{n+1}(\lambda)}{\tilde{w}_{n}(\lambda)}, \quad n \geq 0, \quad c_{1,n,\lambda} = \frac{-\kappa_n}{\tilde{w}_{n}(\lambda)}, \quad n \geq 1,
\]

with

\[
k_n = (n+1)^2 \langle \psi_n(z), \psi_n(z) \rangle_{\mathcal{V}}, \quad \tilde{\kappa}_n = a_{1,n} \frac{(n+1)^2 \langle \phi_{m+n-1}(z), \phi_{m+n-1}(z) \rangle_{\mathcal{U}}}{(n)^2 \langle \psi_{n-1}(z), \psi_{n-1}(z) \rangle_{\mathcal{V}}}.
\]

Example 3.2. In a similar way as in Example 3.1, taking into account that \(b_1, n = 0, n > 0 \), let us consider a \((1,0) \)-coherent pair of order \(m, (\mathcal{U}, \mathcal{V}) \), such that \(\mathcal{U} \) is the Lebesgue linear functional and \(\mathcal{V} \) is normalized, i.e. \(v_0 = 1 \). If \(|a_{1,1}| < 1 \), then \(a_{1,1} = a_{1,1}, n > 2, \) and \(\mathcal{V} \) is the Bernstein-Szegö linear functional with parameter \(-a_{1,1} \). Hence, \(\langle \phi_n(z), \phi_n(z) \rangle_{\mathcal{U}} = 1, n \geq 0, \langle \psi_n(z), \psi_n(z) \rangle_{\mathcal{V}} = 1 - |a_{1,1}|^2, n \geq 1, \langle \psi_0(z), \psi_0(z) \rangle_{\mathcal{V}} = 1 \). As a consequence, \(\zeta_{1,0,\lambda} = 1 + \lambda|a_{1,1}|^2 \), and for \(n \geq 1, \)

\[
\zeta_{1,n-1,\lambda} = \frac{(n+m)|a_{1,1}|}{n}, \quad \zeta_{0,n,\lambda} = 1 + \frac{(n+m)^2|a_{1,1}|^2}{n^2} + \lambda(n+1)^2 \left(1 - |a_{1,1}|^2 \right).
\]

Besides, \(\alpha_0 = \frac{1}{(1 + |a_{1,1}|^2)}, \beta_0 = 0, \beta_1 = \frac{|a_{1,1}|^2}{(n)^2 (1 - |a_{1,1}|^2)} > 0, \)

\[
\alpha_n = \frac{1 + (n+m)^2|a_{1,1}|^2}{(n+1)^2 (1 - |a_{1,1}|^2)} \in \mathbb{R}, \quad n \geq 1, \quad \beta_n = \frac{|a_{1,1}|^2}{(n)^2 (1 - |a_{1,1}|^2)^2} > 0, \quad n \geq 2,
\]

are the coefficients of the three-term recurrence relation (3.20) satisfied by the corresponding SMOP \(\{\tilde{w}_n(\lambda)\}_{n \geq 0} \).

4. A Matrix Interpretation of \((M, N)\)-Coherence on the Unit Circle

Let \(\mathcal{U} \) and \(\mathcal{V} \) be two regular Hermitian linear functionals defined on \(\Lambda \), and let \(\{\phi_n(z)\}_{n \geq 0} \) and \(\{\psi_n(z)\}_{n \geq 0} \) be their corresponding sequences of monic OPUC. \((\mathcal{U}, \mathcal{V}) \) is said to be a \((M, N)\)-coherent pair on the unit circle if

\[
\phi_{n+1}(z) \frac{\phi_n(z)}{n+1} + \sum_{i=1}^{M} a_{i,n} \phi_{n-i+1}(z) = \phi_n(z) + \sum_{i=1}^{N} b_{i,n} \psi_{n-i}(z), \quad n \geq 0,
\]

holds, where \(M, N \) are non-negative integers, \(a_{i,n}, b_{i,n}, n \geq 0 \) are complex numbers such that \(a_{M,n} \neq 0 \) for \(n \geq M \), \(b_{N,n} \neq 0 \) for \(n \geq N \), and \(a_{i,n} = b_{i,n} = 0 \) for \(i > n \).
If we consider the infinite dimensional vectors
\begin{align}
\Phi(z) &= [\phi_0(z), \phi_1(z), \cdots]^T, \quad \Phi_1(z) = [\phi_1(z), \phi_2(z), \cdots]^T, \\
\Psi(z) &= [\psi_0(z), \psi_1(z), \cdots]^T,
\end{align}
then we can formulate the \((M,N)\)-coherence relation (4.1) in a matrix form as
\begin{align}
\mathcal{A}_1\Phi_1'(z) &= \mathcal{B}\Psi(z), \\
\mathcal{A}\Phi'(z) &= \mathcal{B}\Psi(z),
\end{align}
where \(\mathcal{A}, \mathcal{A}_1, \text{ and } \mathcal{B}\) are infinite matrices whose 0th rows (counting the rows from zero) are \([1 \ 1 \ 0 \ \cdots], [1 \ 0 \ \cdots], \text{ and } [1 \ 0 \ \cdots]\), respectively, and their corresponding nth rows, for \(n \geq 1\), are
\[
\begin{bmatrix}
0 & \cdots & 0 & \frac{a_{M,n}}{n-M+1} & \cdots & \frac{a_{2,n}}{n-1} & \frac{a_{1,n}}{n} & 1 & \frac{1}{n+1} & 0 & \cdots \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 & \cdots & 0 & \frac{a_{M,n}}{n-M+1} & \cdots & \frac{a_{1,n}}{n} & 1 & \frac{1}{n+1} & 0 & \cdots \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 & \cdots & 0 & b_{N,n} & \cdots & b_{1,n} & 1 & 0 & \cdots \\
\end{bmatrix}
\]
respectively. Thus, \(\mathcal{A}\) is a lower Hessenberg matrix with \(M+1\) nonzero diagonals, whose entries of its superdiagonal are \(\frac{1}{n+1}\), \(n \geq 0\), and the entries of its main diagonal are 1 and \(\frac{a_{1,n}}{n}\), \(n \geq 1\), and \(\mathcal{A}_1\) and \(\mathcal{B}\) are nonsingular lower triangular matrices with \(M+1\) and \(N+1\) nonzero diagonals, respectively, such that the entries of their main diagonals are \(\frac{1}{n+1}\), \(n \geq 0\), and 1's, respectively.

Also, we can consider the multiplication operators by \(z\) in terms of the bases \(\{\phi_n(z)\}_{n \geq 0}\) and \(\{\psi_n(z)\}_{n \geq 0}\) given in (2.2),
\begin{align}
z\Phi(z) &= \mathcal{H}_{\phi}\Phi(z) \quad \text{and} \quad z\psi(z) = \mathcal{H}_{\psi}\Psi(z),
\end{align}
where \(\mathcal{H}_{\phi}\) and \(\mathcal{H}_{\psi}\) are the infinite lower Hessenberg matrices associated with \(\mathcal{U}\) and \(\mathcal{V}\), respectively. So, in this context, first we state a general result and, as a consequence, we apply it to coherent pairs.

Lemma 4.1. If the sequences of monic OPUC \(\{\phi_n(z)\}_{n \geq 0}\) and \(\{\psi_n(z)\}_{n \geq 0}\) satisfy
\begin{align}
\Phi'(z) &= \mathcal{M}\Psi(z),
\end{align}
where \(\Phi(z)\) and \(\Psi(z)\) are given by (4.2) and \(\mathcal{M}\) is a infinite matrix (such that its 0th row is zero since \(\phi_0'(x) = 0\)), then
\begin{align}
\mathcal{H}_{\phi}^2\mathcal{M} - 2\mathcal{H}_{\phi}\mathcal{M}\mathcal{H}_{\psi} + \mathcal{M}\mathcal{H}_{\psi}^2 &= 0,
\end{align}
where \(\mathcal{H}_{\phi}\) and \(\mathcal{H}_{\psi}\) are the Hessenberg matrices associated with \(\{\phi_n(z)\}_{n \geq 0}\) and \(\{\psi_n(z)\}_{n \geq 0}\), respectively.
Proof. We have that
\[M \mathcal{H}_\phi \Psi(z) + \Phi(z) = z \Phi'(z) + \Phi(z) = (z \Phi(z))' = \mathcal{H}_\phi \Phi'(z) = \mathcal{H}_\phi M \Psi(z), \]
or, equivalently,
\[\Phi(z) = (\mathcal{H}_\phi M - M \mathcal{H}_\psi) \Psi(z). \]

Hence,
\[\mathcal{H}_\phi (\mathcal{H}_\phi M - M \mathcal{H}_\psi) \Psi(z) = \mathcal{H}_\phi \Phi(z) = (\mathcal{H}_\phi M - M \mathcal{H}_\psi) \mathcal{H}_\psi \Psi(z). \]

□

Proposition 4.1. If \((U, V)\) is a \((M, N)\)-coherent pair of regular Hermitian linear functionals on the unit circle given (4.3), then

\[\mathcal{H}_\phi^2 \left[\begin{array}{c} 0 \\ A_1^{-1}B \end{array} \right] - 2 \mathcal{H}_\phi \left[\begin{array}{c} 0 \\ A_1^{-1}B \end{array} \right] \mathcal{H}_\psi + \left[\begin{array}{c} 0 \\ A_1^{-1}B \end{array} \right] \mathcal{H}_\psi^2 = 0, \]

where \(0 = [0, 0, 0, \cdots]\) is the zero row.

Proof. The result is a straightforward consequence of Lemma 4.1 taking as \(M\) the matrix obtained from \(A^{-1}B\) by shifting the matrix one position downward, i.e., adding a zero row to top. □

Proposition 4.2. Let \((U, V)\) be a \((M, N)\)-coherent pair of regular Hermitian linear functionals on the unit circle given by (4.4), such that the matrix \(A\) is a nonsingular matrix (e.g. when \(M = 1\) and \(N \geq 0\), we have that \(a_{1,n} \neq 0, n \geq 1\), and, as a consequence, \(A\) is a nonsingular upper bidiagonal matrix). Let consider matrices \(M_\phi\) and \(M_\psi\) which are similar to the corresponding Hessenberg matrices of \(U\) and \(V\), respectively, such that

\[(4.9) \quad M_\phi = A \mathcal{H}_\phi A^{-1} \quad \text{and} \quad M_\psi = B \mathcal{H}_\psi B^{-1}. \]

Then,

\[(M_\phi - M_\psi)^2 = [M_\phi, M_\psi], \]

where \([M_\phi, M_\psi]\) is the commutator of \(M_\phi\) and \(M_\psi\) defined by \([M_\phi, M_\psi] = M_\phi M_\psi - M_\psi M_\phi\).

Proof. From (4.4) and (4.7), \(\mathcal{H}_\phi^2 A^{-1}B - 2 \mathcal{H}_\phi A^{-1}B \mathcal{H}_\psi + A^{-1}B \mathcal{H}_\psi^2 = 0\) holds. Therefore, multiplying on the left by \(A\) and on the right by \(B^{-1}\) in both sides of the previous equation and taking into account (4.9), the previous equation becomes

\[0 = M_\phi^2 - 2 M_\phi M_\psi + M_\psi^2 = (M_\phi - M_\psi)^2 - [M_\phi, M_\psi]. \]

□

Remark 4.1. When \(U\) is the Lebesgue linear functional we get \(\phi_n^{(m)}(z) = z^n = \phi_n(z), \ m, n \geq 0\). So, if \((U, V)\) is a \((M, N)\)-coherent pair of order \(m, m \geq 0\), and \(U\) is the Lebesgue linear functional, then (3.7) becomes

\[\phi_n(z) + \sum_{i=1}^M a_{i,n} \phi_{n-i}(z) = \psi_n(z) + \sum_{i=1}^N b_{i,n} \psi_{n-i}(z), \quad n \geq 0, \]
which can be written in a matrix form as
\[
\hat{A}_1 \Phi(z) = B \Psi(z),
\]
where \(\Phi(z), \Psi(z), B \) are given as in (4.4), and the infinite matrix \(\hat{A}_1 \) is as \(B \), i.e.
it is a lower triangular matrix with \(M + 1 \) nonzero diagonals, whose entries of its main diagonal are all 1’s and its \(n \)th row for \(n \geq 1 \), counting the rows from zero, is
\[
\begin{bmatrix}
0 & \cdots & 0 & a_{M,n} & \cdots & a_{1,n} & 1 & 0 & \cdots
\end{bmatrix}.
\]
Consequently, \(\hat{A}_1 \) is nonsingular as \(B \). Hence,
\[
\hat{A}_1 H \phi \hat{A}_1^{-1} B \Psi(z) \stackrel{(4.10)}{=} z \hat{A}_1 \Phi(z) \stackrel{(4.5)}{=} z B \Psi(z) \stackrel{(4.5)}{=} B H \psi B^{-1} \Psi(z),
\]
from which we can conclude that
\[
\hat{A}_1 H \phi \hat{A}_1^{-1} = \hat{M}_\phi = M_\psi = B H \psi B^{-1},
\]
where \(H \phi \) and \(H \psi \) are the Hessenberg matrices associated with \(U \) and \(V \), respectively. Therefore, \(H \phi \) and \(H \psi \) are similar matrices.

4.1. A Matrix Interpretation of Sobolev Orthogonal Polynomials and \((M,N)\)-Coherence of Order \(m \) on the Unit Circle. Let us recall that there is a close relation between Sobolev orthogonal polynomials and \((M,N)\)-coherent pairs of order \(m \) of regular Hermitian linear functionals on the unit circle, \(m \geq 1 \). More precisely, in Theorem 3.1 we showed that the \((M,N)\)-coherence relation of order \(m \) on the unit circle (3.7) satisfied by the sequences of monic OPUC associated with the regular Hermitian linear functionals \(U \) and \(V \) implies (3.10), i.e.,
\[
\phi_{n+m}(z) = \sum_{i=1}^{M} \tilde{a}_{i,n} \phi_{n-i+m}(z) = S_{n+m}(z;\lambda) + \sum_{j=1}^{K} c_{j,n,\lambda} S_{n-j+m}(z;\lambda), \quad n \geq 0,
\]
and \(S_n(z;\lambda) = \phi_n(z) \), \(n \leq m \), where \(K = \max\{M,N\} \), \(c_{j,n,\lambda} = 0, n \leq j \leq K, \)
\[
\tilde{a}_{i,n} = \begin{cases}
(n+1)_m & a_{i,n}, \quad n \geq 0, \\
(n-i+1)_m & a_{i,n} = 0, \quad i > n, \quad \tilde{a}_{0,n} = 1, \quad n \geq 0.
\end{cases}
\]
Here \(S_n(z;\lambda) \), \(n \geq 0 \), are the monic Sobolev polynomials on the unit circle orthogonal with respect to the inner product (3.1). In this way, if we write these algebraic relations as
\[
\hat{A} \Phi(z) = C s(z;\lambda),
\]
where
\[
\Phi(z) = [\phi_0(z), \phi_1(z), \cdots]^T, \quad s(z;\lambda) = [S_0(z;\lambda), S_1(z;\lambda), \cdots]^T,
\]
we have
\[
\begin{bmatrix}
0 & \cdots & 0 & \tilde{a}_{M,n} & \cdots & \tilde{a}_{1,n} & 1 & 0 & \cdots
\end{bmatrix}_{n-M+m \text{ zeros}}
\]
and
\[
\begin{bmatrix}
0 & \cdots & 0 & c_{K,n,\lambda} & \cdots & c_{1,n,\lambda} & 1 & 0 & \cdots
\end{bmatrix}_{n-K+m \text{ zeros}}
\]
are the \((n + m)\)th rows, respectively, \(n \geq 0\), and \([0 \cdots 0 1 0 \cdots]\) are the first \(m\) rows, counting from zero, of the lower triangular matrices \(\tilde{A}\) and \(C\) (notice that these matrices have \(M + 1\) and \(K + 1\) nonzero diagonals, respectively, and 1’s as entries of their main diagonal), then we obtain the following result.

Proposition 4.3. If \((U, V)\) is a \((M, N)\)-coherent pair of order \(m\), \(m \geq 1\), of regular Hermitian linear functionals on the unit circle, then the matrix representation of the multiplication operator by \(z\) in terms of \(\{S_n(z; \lambda)\}_{n \geq 0}\), the basis of monic Sobolev OPUC with respect to the inner product (3.1), is given by

\[
zs(z; \lambda) = H_{S,\phi,\lambda} s(z; \lambda),
\]

where \(H_{S,\phi,\lambda}\) is a lower Hessenberg matrix similar to the Hessenberg matrix associated with the linear functional \(U\).

Proof. Since

\[
zs(z; \lambda) = C^{-1} \tilde{A} \Phi(z) = C^{-1} \tilde{A} H_{\phi} \Phi(z) = C^{-1} \tilde{A} H_{\phi} \tilde{A}^{-1}Cs(z; \lambda),
\]

and if \(H_{S,\phi,\lambda} = C^{-1} \tilde{A} H_{\phi} \tilde{A}^{-1}C = \left[C^{-1} \tilde{A}\right] H_{\phi} \left[C^{-1} \tilde{A}\right]^{-1}\), then the proof is complete. \(\square\)

References

Department of Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Leganés, Spain.

E-mail address: pacomarc@ing.uc3m.es, npinzon@math.uc3m.es